

PUMP BEARING TRAINING

PRESENTED BY AARON DODD NSK AMERICAS JUNE 24, 2015

Think NSK.

- Participants are in a listen-only mode.
- To ask a question during the event, use the chat feature at the bottom left of your screen. Technical questions will be answered by ReadyTalk. Questions for our speakers can be asked at any time and will be answered during the Q&A at the end of the session.
- Visit pumpsandsystems.com in the coming days to access the recording of the webinar or download the presentation.

NSK MOTION AND CONTROL

AUTOMOTIVE PRODUCTS

Bearing and steering systems that are compact, reliable and promote reduced fuel consumption

INDUSTRIAL MACHINERY

Supplying the vast array of rolling bearings to industrial OEM and aftermarket partners

PRECISION MACHINERY AND PARTS

Ultra precise positioning technologies for machine tool and factory automation

NSK was founded in 1916 and produced the first ball bearings in Japan. Today they are a global leader in research and development and offer a full range of bearings sold worldwide.

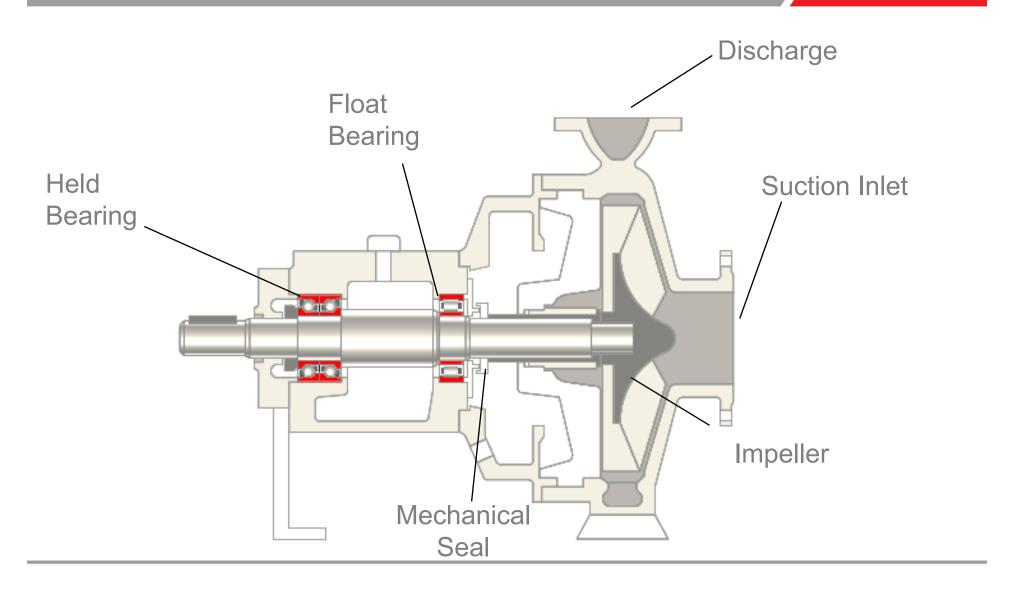
- 65 Manufacturing Facilities Worldwide
- 9 Manufacturing Facilities in the Americas

PRESENTER

Aaron Dodd joined NSK as an Application Engineer in 2011, with specialties in mining, utilities, and paper making applications. He was promoted to NSK Segment Manager for Mining and Energy in 2013.

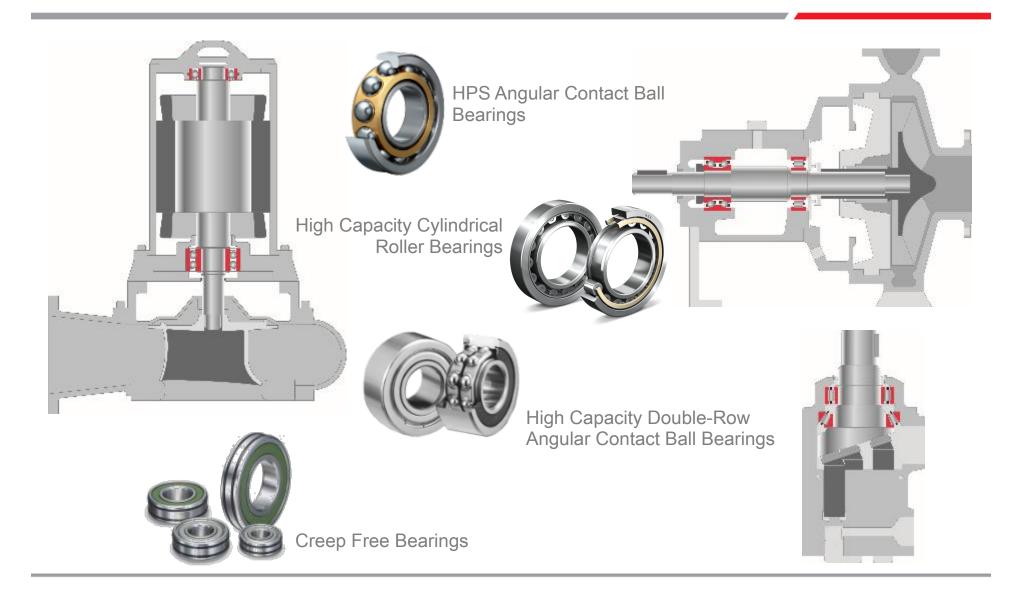
Dodd began his career with Patriot Pumps, in Howell, Michigan, designing, repairing, and implementing pumps for dewatering and bypass pumping applications.

He holds a BSE in Mechanical Engineering from the University of Michigan.



AGENDA

- Pump Bearing Introduction
- Pump Bearing Dynamics
- Pump Bearing Issues
- Pump and Bearing
 Maintenance Tips
- NSK Problem Solvers



CENTRIFUGAL PUMPS

NSK BEARINGS IN PUMPS

WHY ARE PUMP BEARINGS UNIQUE?

- Pump bearings keep axial end movement to a minimum
- Keep the radial deflections to a minimum
- Maintains the proper clearance between the pump impeller and the housing

COMMON PUMP BEARING TYPES

Angular Contact

Double Row Angular Contact

Cylindrical

ANGULAR CONTACT BALL BEARING

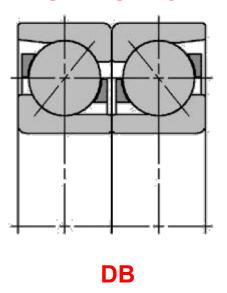
Typically fixed bearing

Accommodates radial and axial loads in one direction

Various contact angles available

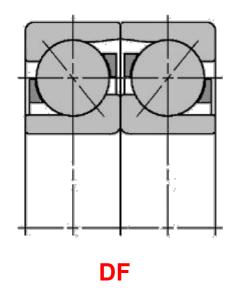
- 15, 25, 30, 40 degrees
- Higher contact angle means
 - Greater axial & lower radial load capacity
 - Lower speeds

Cages

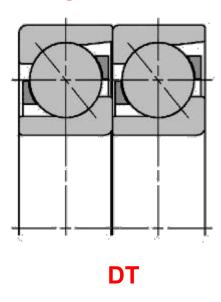

- Machined brass standard
- Also offered in steel, polyamide, and phenolic

Operate with clearance or preload

High rigidity with preload


DUPLEX COMBINATIONS OF ANGULAR CONTACT BALL BEARINGS

High Rigidity


Back to Back

Low Rigidity

Face to Face

High Thrust

Tandem

ANGULAR CONTACT PUMP BEARINGS

72 05 B M PC 72 05 B EA MR SUGA

72 / 73 Basic type and series

05 Bore size in mm (multiply by 5)

■ B 40° contact angle

EA Extra capacity

M/MR Machined brass, high strength cage


PC ABEC 3 tolerance, normal axial clearance

SUGA Universally ground, slight preload

Note: BEAMR series comes in different clearance and preload options

DOUBLE ROW BALL BEARING

Typically Fixed Bearing Equivalent to Two single row Bearings mounted Back to Back

 Radial Capacity Approximately 1.7 Times a Single Bearing

Standard and Max Capacity Designs

Max capacity has filling slot, could be issue

Open or Sealed Designs

Accommodates Radial Loads and Axial Loads in Both Directions (Standard Capacity Only)

DOUBLE ROW BALL BEARING

Typically Float Bearing

Rings can move axially during operation

High Radial Capacity

Good Speed Capacity

Different Cage Options

- EM brass standard
- Also available in steel, polyamide, phenolic

CENTRIFUGAL PUMPS

The impeller shaft is connected to the motor by:

- Direct Coupling (Rigid or Flexible)
- Indirect Coupling Via a Belt Drive

Most common rotational speeds:

- 1200 RPM
 - Large end suction and split case pumps
- 1800 RPM
 - Medium sized
- 3600 RPM
 - Smaller process pumps

CENTRIFUGAL PUMP LOADS

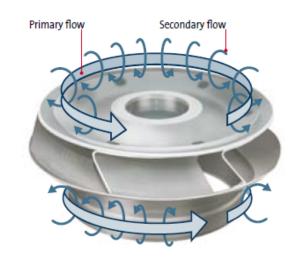
Mass of impeller and shaft loads due to shaft coupling or belt drive hydraulic loads

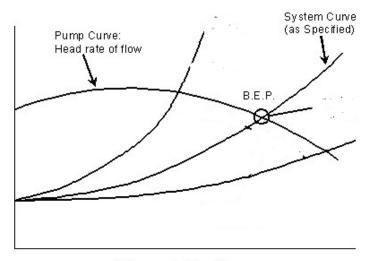
Hydrostatic and momentum forces from fluid being pumped

PUMP COUPLING LOADS

Belt drives and flexible couplings exert a force on the pump shaft

- Belt drive force > flexible coupling
- Flexible coupling force can be reduced with better motor pump shaft alignment


HYDRAULIC LOADS


Due to the unequal velocity of the fluid flowing through the casing

- Influenced by casing design
- Influenced by piping

Increases in magnitude and changes direction at other flow conditions

At a minimum when pump is operating at the "best efficiency point" (or BEP)

Volumetric Flow Rate

BEARING LIFE

A common cause of bearing failure in pump applications is water contamination

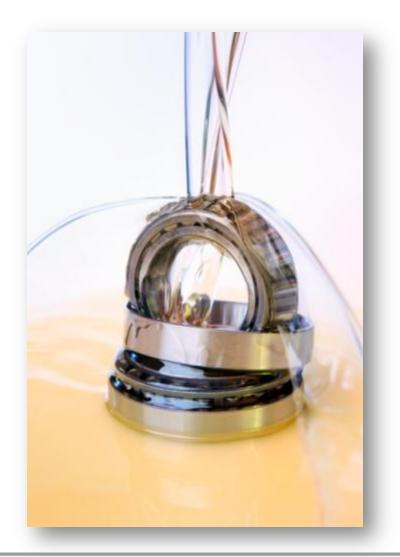
 The amount of water that can be considered contamination is dependent upon the type of grease and its water content limit

LUBRICATION TYPES

Grease

 Sealed in bearing or injected into pump cavity

Oil bath


 Bearing rolling elements roll through an oil reservoir in the housing

Oil ring

 A ring is fitted on the shaft and rotates through the oil bath to fling oil onto the bearing

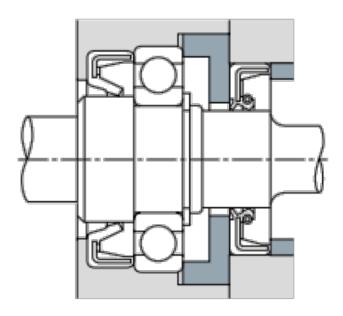
Oil mist

 Atomized oil droplets are sprayed into the bearing housing with compressed air

SEALING OF SHAFT AT THE HOUSING

Purpose

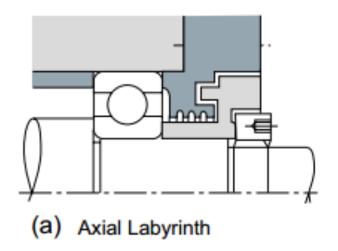
- Keep solid and liquid contaminants from reaching the bearing
- Retain the lubricant

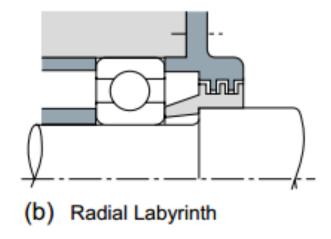

Most common

- Radial lip seal
- Labyrinth seal

RADIAL LIP SEAL

Effectiveness is dependent upon the lubricant and the shaft surface finish


- Excessive friction can cause high temperatures and wear on the seal and on the shaft
- Typically short life (2000 4000 hrs)



LABYRINTH SEALS

Offers little or no additional friction

- Typically long life
- Provides natural venting

FAILURE ANALYSIS

Failure types

- Lubrication
- Contamination
- Load issues
- Alignment issues

FAILURE ANALYSIS-LUBRICATION

<u>Cause</u>		<u>Effect</u>
Lack Of	→	Increased Friction And Wear.
Not Maintaining Proper Oil Level Or Adding Proper Grease Amount	->	Premature Failure
Too Much	->	Increased Friction
High Oil Sump Or To Much Grease	->	Increased Torque Roller Skidding

FLAKING

FAILURE ANALYSIS- CONTAMINATION

Cause
Effect

Environment
Water Corrosives

Sealing To
Allows Contamination Enter. Particle Denting

Storage
Open Containers / Packages

CONTAMINATION

FAILURE ANALYSIS- OVER LOADING


Cause
Effect

Running Pump
Over Heating

Right of BEP
Brinelling

Bearing Preload

OVER LOADING

FAILURE ANALYSIS- UNDER LOADING

Cause

Running Pump

Left Of BEP

Over Heating

Brinelling / Skidding

Closed Valves

Recirculation

Vibration

UNDER LOADING

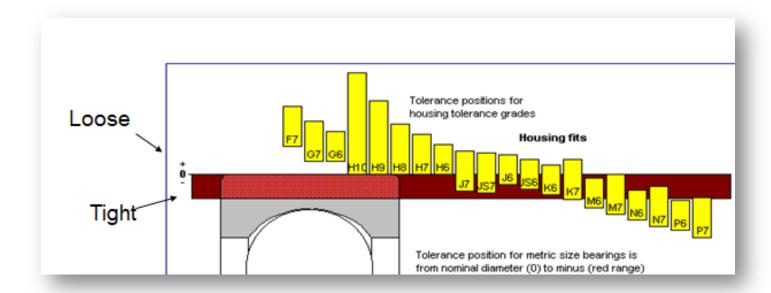
FAILURE ANALYSIS- ALIGNMENT

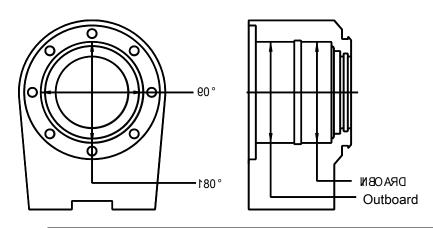
<u>Cause</u>	<u>Effect</u>
Motor To Pump	> Increased Vibration
Installation Base	> Cage Damage Soft Foot
Piping	Distorted Housings Casings Impeller Rubs Vibration


ALIGNMENT

BEARING FITS

Shaft fits

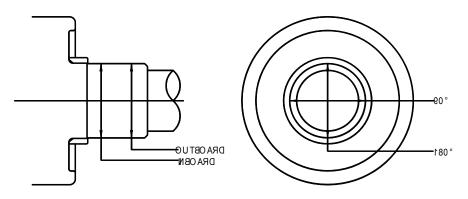

- Interference fit between inner ring and shaft
- Use heavier fits than normal if
 - Bearing is mounted on hollow shaft or sleeve
- Use lighter fits than normal if
 - Bearing is mounted on a stainless steel shaft and
 - Has a large temperature difference between inner and outer rings


BEARING FITS

Housing fits

- Slight clearance between outer ring and housing
- Use looser fits for large bearings that also have a temperature difference between outer ring and housing

HOUSING MEASURING PROCEDURE


Measure housing bore in 4 places

- Top to bottom
- Side to side
- Front and back

	90°	180°	Difference	Over
Inboard				
Outboard				
Difference				

Chock Bore Tolerances							
Bearing OD (mm)		Fit			Wear Limit		
Over	Including	Designation	Inches	mm	Inches	mm	
120	150	F9	+0.0056 +0.0017	+0.143 +0.043	0.0095	0.230	
150	180	Nonstandard	+0.0056 +0.0017	+0.143 +0.043	0.0100	0.250	
180	250	Nonstandard	+0.0059 +0.0020	+0.150 +0.050	0.0105	0.260	
250	315	Nonstandard	+0.0061 +0.0022	+0.156 +0.056	0.0110	0.270	

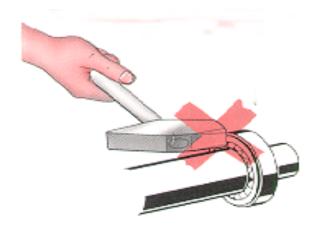
SHAFT MEASURING PROCEDURE

Measure shaft diameter in 4 places

- Top to bottom
- Side to side
- Front and back

	90°	180°	Difference	Over
Inboard				
Outboard				
Difference				

Journal Tolerances (Excluding Split Caster Block Bearing Seats)						
Bearing Bore (mm)		Fit			Wear Limit	
Over	Including	Designation	Inches	mm	Inches	mm
50	80				0.0000	0.000
80	120	f7	-0.0014 -0.0028	-0.036 -0.071	0.0045	0.110
120	180	f7	-0.0017 -0.0033	-0.043 -0.083	0.0050	0.130


DISASSEMBLY AND BEARING REMOVAL PROCEDURES

BEARING SAFETY

Safe handling

- Do not hit bearings with a hammer
- Bearing steel is hard and brittle
- Will fracture on impact
- Sharp pieces could fly

USE PROPER TOOLS

DO NOT USE

- Torches
- Hammers
- Brass Rods
- Chisels

MOUNTING CONSIDERATIONS - WORK AREA PREPARATION

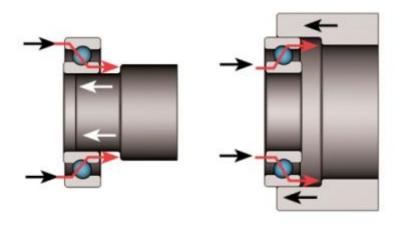
Clean area where bearings are installed

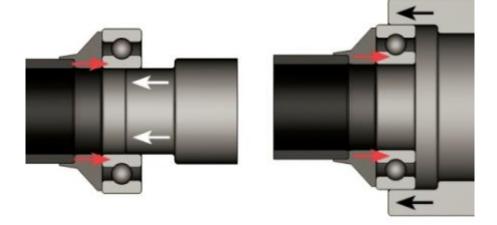
- Dirt
- Grinding dust
- Dirty rags

Clean shaft and housing and all parts prior to bringing into build up area

Make sure all parts are available

Including nuts, bolts, seals, o-rings


Check shaft and housing dimensions


- Burrs, nicks, surface damage
- Diameter
- Roundness
- Fillet
- Shoulder height

BEARING MOUNTING PROCEDURES

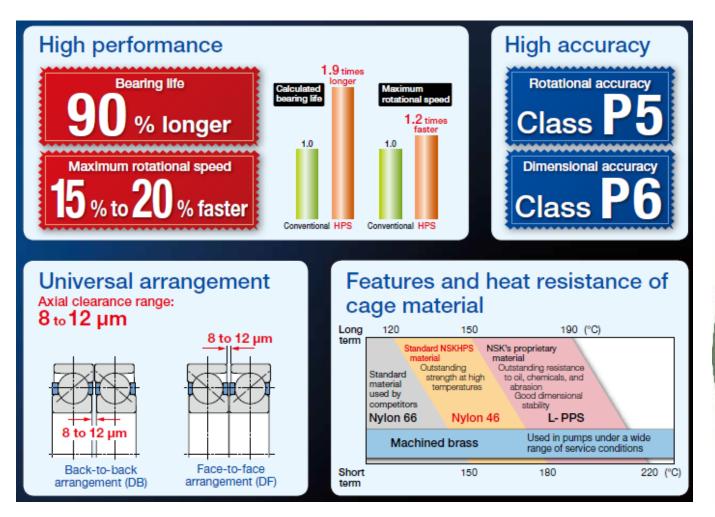
Press on the Ring that is Being Installed

IMPROPER

CORRECT

Simultaneous press fitting of inner and outer rings

Or


Press on the ring with tight fit

NSK PROBLEM SOLVERS

FEATURES OF NSK BEAMR STYLE ANGULAR CONTACT

FEATURES OF NSK EP/UR DOUBLE ROW ANGULAR CONTACT BEARING

- "EP" high purity steel and "UR" heat treatment gives 2-4 X bearing life compared to standard steels.
- Higher 40 degree contact angle for higher axial stiffness and capacity.
- Advanced cage design for improved lubrication and strength.

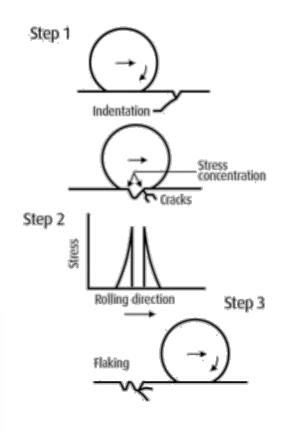
SLURRY PUMP OPERATION

- Slurry pumps pump a mixture of solids and liquids
- This slurry introduces harsher conditions such as vibration and contamination to the bearing stack.
- NSK "TF" Steel will extend the life of bearings in slurry pumps.

SPECIAL "TF" TOUGH STEELTM MATERIAL OPTION FOR CONTAMINATED ENVIRONMENTS

Benefits

- Extend maintenance interval
- Respond to contaminated environment
- Long life under contaminated environment


Technology

Special material and heat treatment to prevent surface initiated failures

Result

2 times life under contaminated conditions

SLURRY PUMP CASE STUDY

- NSK was asked to help improve life of angular contact bearings in slurry pumps
- Main cause of failure was contamination
- NSK proposed using HTF tough steel ™
- Two common failure modes, were poor installation and contamination

Previous life: 2-3 months

NSK life: 1 year

Cost savings: \$60,000

QUESTIONS

PUMP BEARING TRAINING

Visit pumpsandsystems.com/webinars to see this entire webinar, as well as the questions and answers.

PRESENTED BY AARON DODD NSK AMERICAS JUNE 24, 2015

