Grundfos Technical Institute

Mechanical Seals

www.grundfos.us/training

Grundfos Technical Institute www.grundfos.us/training

- Virtual Classroom
 - Self-Paced
 - Over 40 courses
 - Certificates of Completion
- Webinars
 - Live and Recorded
- Face-to-Face Training

Presenters:

Presenter: Reece Robinson Senior Technical Trainer, Grundfos Olathe, Kansas

Moderator: Jim Swetye Senior Technical Trainer, Grundfos

Mechanical Seals in the Pump Industry

We will cover this subject in three webinars:

- 1. Introductory (today)
- 2. Advanced
- 3. Installation, service and failure analysis

Course Learning Objectives

By the end of this course you will understand and can identify:

- 1. The purpose of the mechanical seal
- 2. The essential elements of a mechanical seal
- The classification of mechanical seals
- 4. When to use different seal material types
- 5. Common seal flush plans

Shaft Seals

For most pumps a decisive element for the quality of the pump during its lifetime is a good and robust shaft seal.

Lubricating film

Lubricating film

Lubricating film

The six "MUST" of the lubricating film

- be always present
- be stable
- be clean, free of abrasives
- have reasonable viscosity
- have controlled temperature
- have acceptable pressure

Shaft Seal Types

Stuffing Box

Mechanical Seal

Purpose of a Mechanical Seal

The purpose of the mechanical seal is to control leakage from the stuffing box or seal chamber and prevent air from leaking back into the pump.

Packing vs Mechanical Seals

Packing

- Seals with visible leak
- Constant monitoring for adjustments
- Shaft wear or use sleeve
- Special handling not required
- Low initial cost

Mechanical Seals

- Seals with invisible leak
- Minimal monitoring and no maintenance
- Virtually no shaft drag
- Handle with care
- High initial cost

Mechanical seal Anatomy

The essential elements of a mechanical seal:

The Primary Sealing Element

The Secondary Sealing Elements

- The Hardware

Primary Sealing Element

The Primary Sealing Elements

The Rotating Ring

- The Stationary Ring

Secondary Sealing Elements

The Secondary Sealing Elements

Dynamic Seal

Static Seal

Hardware

The Hardware

- Drive Elements

Load Element

- Adaptive Elements

Mechanical Seal Classification

Mechanical seals are typically divided into two categories: by Arrangement and by Design.

Arrangement Classification

Single Inside Mounted

Single Outside Mounted

Cartridge Seal

Dual Tandem

Dual Face-to-Face

Dual Back-to-Back

Single – Inside Mounted

Single - Outside Mounted

Cartridge – Cartridge Seal

Dual Unpressurized Seals (former Tandem seals)

Dual Unpressurized seals

Dual Pressurized Seals (former Double seals)

Dual Pressurized Seals

Design Classification

Unbalanced Pusher

Pusher Cartridge Seal

Non-Pusher (Metal Bellows)

Balanced Pusher

Design – Balance

 $Balance\ Ratio = Closing\ Area\ (Ac)/Opening\ Area\ (Ao)$

Balance - Unbalanced Seals

Balance - Balanced Seals

Design – Loading

Single Spring

Loading – Pusher Seals

Loading – Non-Pusher Seals

Rotating Vs. Stationary Head

Rotating head:

- Springs or bellows rotates with the shaft.
- Peripheral velocity up to 75 feet/sec
- Perpendicularity required
- Self cleaning
- Sensitive to shaft deflection

Stationary head:

- Springs or bellows do not rotate
- Peripheral velocity above 75 feet/sec.
- Ancillary plan should clean the head
- Allows some degree of perpendicularity error

Material Selection

What you need to know about the liquid:

- Corrosiveness
- Temperature
- Specific Gravity
- Vapor Pressure and boiling point
- Viscosity
- Abrasiveness

Primary Seal Materials

Common Primary Seal Faces:

- Tungsten carbide / tungsten carbide
- Silicon carbide / silicon carbide
- Carbon / tungsten carbide or carbon / silicon carbide
- Carbon / ceramic (aluminum oxide)
- Various

Secondary Seal Materials

Common Secondary Seal Materials:

- NBR
- EPDM
- FKM (Viton)
- FXM (Flouraz)
- FFKM (Kalrez)

Hardware Materials

Common Hardware Materials:

- 316SS
- Hastelloy "C"
- Duplex SS
- Carpenter 42 or Invar 36 (for Bellows)

Ancillary plans

The main functions of ancillary plans are:

- Circulation
- Heat exchange
- Solids management
- Risk management
- Emission management
- Gas barrier management

Plan 01: Internal recirculation from pump discharge area to seal chamber.

- Cooling the seal.
- Venting the seal box.
- Fixed flow.
- Could cause erosion if there are solids.

Plan 11:

External recirculation from pump discharge area to seal chamber through an orifice

- Cooling the seal.
- Venting the seal box.
- Adjustable flow changing the control orifice.
- Could cause erosion if there are solids.

Plan 13:

External recirculation from pump suction area to seal chamber through an orifice

- Cooling the seal.
- Venting the seal box.
- Lower the seal box pressure.
- Cleaning the seal chamber.

Plan 14:

External recirculation from pump discharge area to seal chamber through an orifice, then back to the suction area.

- Plan 11 + Plan 13 = Plan 14
- Cooling the seal.
- Venting the seal box.
- Adjustable flow changing the control orifices.
- Used in pumps with no impeller balance holes

COOLING

Plan 21:

Circulation from discharge though a heat exchanger, then to the seal box

- Plan 11 + Heat Exchanger
- Effective, but not so efficient.

CLEANING

Plan 31:

Circulation from pump discharge passing through a solids separator, then to the seal box. The line with higher solids concentration goes to the pump suction.

CLEANING

Plan 32: External fluid injection in the seal box.

- The seal works with a mixture of process fluid and injection fluid
- •The injected fluid must be compatible with process fluid
- •The injection fluid cost is an issue to consider

Course Learning Summary

In this course we learned today:

- 1. The purpose of the mechanical seal
- 2. The essential elements of a mechanical seal
- 3. The classification of mechanical seals
- 4. When to use different seal material types
- 5. Common seal flush plans

Grundfos Technical Institute

Thank you for completing this course!

www.grundfos.us/training