Full CFD analysis can improve the operation of high-maintenance pumps.
by Richard Martinez, Standard Alloys
August 29, 2013

Producing energy savings within an industrial plant is a high priority for plant management. Reliability engineers focus on extending the mean time between repairs (MTBR), but they may often overlook the potential energy savings that can be generated if a full engineering study is performed as part of their root cause failure analysis (RCFA). This is especially true with regard to pumps since they are peppered throughout many facilities. Hydraulic engineers use computational fluid dynamics (CFD) to adjust the hydraulic fit of a pump to extend the MTBR and to reduce the energy costs of operating the pump. Such measures can dramatically reduce the life-cycle cost (LCC) of a pump, which is the total cost of ownership for a piece of equipment.

Where the Pump Operates

Many plants have a “bad actor” list. These are the pumps that have a MTBR of less than one or possibly two years. Many different solutions are offered by manufacturers and service providers—such as improved shaft stiffness, metallurgical upgrades or wear coatings—to deal with cavitation or suction recirculation.

These offerings might increase the MTBR, but they will not truly solve the problem. The real first step should be to evaluate the actual pump operation or the standard operating point of the pump with the certified performance test supplied with the pump. Often, two troubling situations are revealed:

  • The plant operation has changed, and the standard operating point of the pump is no longer within the preferred operating region of the pump curve.
  • The pump was never operated within the preferred operating region.

As published in API 610, the preferred operating region of the pump curve is where the pump was designed to operate. By operating in the preferred operating region, the pump vibration will be at the lowest level, increasing seal and bearing life and extending the MTBR. This region is where the best efficiency point (BEP) is. Simply stated, low vibration and peak efficiency means lower maintenance and lower energy costs for that pump.

Replacement—Not Always the Solution

Once the problem pump is identified as not having a good hydraulic fit with the standard operating point, some would say that a larger or smaller pump—depending on the findings—should be purchased. For example, if the pump is running to the right of the BEP, then more capacity or a larger pump is needed. If the pump is running to the left of the BEP, then less capacity or a smaller pump is needed. Often, this option is not viable since a new pump requires a capital project with a new driver, foundation, piping, instrumentation and other equipment.

CFD analysis shows the pressure development within an impeller

Another solution offered by some companies is a hydraulic rerate that can improve the hydraulic fit. However, this often still falls short of the true need and will certainly not optimize the pump efficiency.

In many cases, the best solution is to match the pump’s BEP with the standard operating point. This can only be accomplished with a custom impeller design. These impellers can be developed by using CFD technology to simulate the hydraulic performance while iterating through several “what if” hydraulic layout scenarios. These simulations allow for the validation of the pump performance without the cost and time delays associated with building prototypes and performing certified performance tests.

Caution must be advised on two specific topics. First, not all successful CFD simulations will yield a hydraulic layout that can be manufactured. The hydraulic engineer must understand the manufacturing processes to ensure that the solution is feasible. Second, not all desired modifications can be met. Sometimes, the required hydraulic change falls outside the feasible realm. However, in this situation, the CFD analysis can be used to validate that truly no other solution exists for this piece of equipment. That vital information can then be presented to plant management to support and justify the replacement of a high-maintenance pump.

Pump performance comparison between high-flow, low-flow and CHS impeller designs

State-of-the-Art Technology in Action

A reliability engineer within a petrochemical refinery identified that his 3x4x13 OH2 pump was oversized and being operated to the left of the BEP. The BEP flow rate for the pump was 1,200 gallons per minute (gpm), and the standard operating condition of the plant was 730 gpm. The pump had poor reliability with the original impeller and a MTBR of approximately 18 months. The typical vibration for this pump after a complete overhaul and being returned to the field was 0.25 inches per second.

Additionally, the pump efficiency was only 64 percent at this flow rate as opposed to the 76 percent efficiency at the BEP. The original equipment manufacturer (OEM) was contacted to see if it had a potential solution. The OEM had a low-flow impeller for this size and a type pump that had a BEP flow rate of 750 gpm, but the head was not sufficient to meet the system curve.