First of Two Parts
by Ray Hardee ( Engineered Software, Inc.)
July 9, 2015

Users have several options for controlling piping systems. Previous columns established that every piping system is composed of pump elements, process elements and control elements. This column will focus on the control elements, which improve the quality of the product. Control elements can be either passive or active.

The System

The example system is a water supply system in an industrial plant. The system includes a supply tank, which provides a constant source of fluid to the pump. The system flow demand to the plant ranges from 200 to 500 gallons per minute (gpm) with an average system flow demand of 400 gpm.

The pump was sized so the flow rate exceeds the maximum expected system flow demand of 500 gpm. The process fluid is pumped to the destination tank. The elevation of the tank provides the head at sufficient fluid quantity to all plant loads.

This column will consider the different types of controls found in the piping system and explain the advantages and disadvantages of each type. All the examples presented deal with maintaining a level in a tank, but the same controls can be applied to different process variables (see Figure 1).

Figure 1. The example system shows how control interacts with the system. The system provides sufficient flow to the destination tank to supply a maximum of 500 gpm flow rate to the system. The purpose of the control is to have the system supply the flow needed by the process. (Graphics courtesy of the author)Figure 1. The example system shows how control interacts with the system. The system provides sufficient flow to the destination tank to supply a maximum of 500 gpm flow rate to the system. The purpose of the control is to have the system supply the flow needed by the process. (Graphics courtesy of the author)

The example system supplies water to several plant loads from a destination tank 50 feet above the supply tank. The level in the destination tank is such that the piping going to the system loads throughout the plant can meet the designed plant load of 500 gpm. The pump for the system can pump up to 616.2 gpm to the destination tank.

This flow rate is greater than the maximum value for the system flow demand, so the control element must be designed to control the system to improve the product's quality.

Passive Controls

Passive controls are the most basic. Examples include overflow, bypass, on/off and manual throttling. These controls activate when a process variable is reached and a single action occurs limiting the variable.

Overflow & Bypass Control

One way to handle the excess capacity of the pump is to direct excess flow back to the supply tank. Using this approach, the fluid keeps the destination tank full, and all excess flow beyond the system demand is directed back to the supply tank. This approach provides a fairly constant pump head value, resulting in a fairly constant flow rate. This can be either an advantage or disadvantage depending on where the pump is operating in relation to its best efficiency point.

The advantage of this method of control is initial costs. It only requires a recirculation pipeline and a tank overflow.

The disadvantage of this method is that the excess flow must be pumped to the destination tank (the difference between the pump flow, less the process demand). This creates increased pumping costs, with a resulting energy loss based on the quantity of the return flow. Table 1 shows the energy balance sheet for the annual flow rate of 400 gpm.

Table 1. Annual operating cost using overflow control. The system requires an average flow rate of 400 gpm, but 616 gpm is pumped to the destination tank.Table 1. Annual operating cost using overflow control. The system requires an average flow rate of 400 gpm, but 616 gpm is pumped to the destination tank.

On/Off Control

Another way to handle excess pump capacity is to turn the pump off when the liquid level in the destination tank reaches a predetermined high level. When the pump is off, fluid stops flowing into the destination tank, but the system flow demand continues. The outflow from the destination tank causes the tank level to decrease. At a predetermined low tank level, the pump starts.

Because the pump capacity is greater than the system flow demand, the tank will fill over time until the high tank level causes the pump to stop. The cycle repeats as necessary.

The advantages of on/off control are simple design and low cost. A level switch in the destination tank turns the pump off with a high tank level and turns on when the tank level is low.

One disadvantage of this method is that a single tank level is not maintained. The level varies between the high and low levels. Also, the pump is cycled on and off, resulting in increased wear on the pump and motor. Increasing the capacity of the destination tank minimizes the number of pump starts per year but increases the cost of the pump system.

Table 2. The annual operating costs for the on/off control. The flow rate through the system is the same, but the pump is only run 5,195 hours per year.Table 2. The annual operating costs for the on/off control. The flow rate through the system is the same, but the pump is only run 5,195 hours per year.

Table 2 shows how much this method of control costs with a constant plant demand of 400 gpm. The destination tank has a working capacity of 8,000 gallons. With 616 gpm going into the tank, and 400 gpm leaving the tank, 216 gpm of capacity is used to fill the tank.

Pages