by Noria Corporation, Introduction by Robert X. Perez
A Note from Robert X. Perez: Welcome to this month's installment of Compressor University! We are frequently asked to guess the answer to challenging machinery condition questions such as:
  • Can we make it until. . . ?
  • When should I plan for a major overhaul?
  • Is this compressor safe to run?
  • Should we go into the compressor during this outage, or can we make it until the next one?

Deciding whether to repair a machine or keep it running can be a time of high anxiety, especially if limited information is available to make a decision. Fortunately, the right tools and training can now give you the ability to "see" inside your reciprocating compressors to make confident decisions on repairs.

Reciprocating compressors are unique in that they are the only compressor type I know whose thermodynamic cycle can be accurately analyzed in great detail using commercially available analysis equipment. Advances in portable reciprocating compression analyzers have made them capable of collecting, storing and analyzing actual P-V plots. P-V plots are pressure-volume diagrams that are generated by measuring dynamic pressure data inside compressor cylinders and plotting them against the displaced volume of the cylinder. The displaced volume is calculated by correlating the crank angle to the position of the piston and multiplying this value by the piston area.

P-V plots, when evaluated along with vibration data, are immensely valuable in assessing performance and detecting internal malfunctions. "Reciprocating Compressor Basics" is a useful overview of reciprocating compressor technology that includes a clear explanation of the thermodynamic cycle and what a typical P-V diagram looks like. Anyone who works with or around reciprocating compressors should read this article.

As some of the most critical and expensive systems at a production facility, reciprocating compressors deserve special attention. Gas transmission pipelines, petrochemical plants, refineries and many other industries all depend on this type of equipment. Due to many factors, including but not limited to the quality of the initial specification/design, adequacy of maintenance practices and operational factors, industrial facilities can expect widely varying life cycle costs and reliability from their own installations.

Various compressors are found in almost every industrial facility. Types of gases compressed include:

  • Air for compressed tool and instrument air systems
  • Hydrogen, oxygen, etc. for chemical processing
  • Light hydrocarbon fractions in refining
  • Various gases for storage or transmission
  • Other applications

There are two primary classifications of industrial compressors: intermittent flow (positive displacement), including reciprocating and rotary types; and continuous flow, including centrifugal and axial flow types.

Reciprocating compressors are typically used where high compression ratios (ratio of discharge to suction pressures) are required per stage without high flow rates, and the process fluid is relatively dry. Wet gas compressors tend to be centrifugal types. High flow, low compression ratio applications are best served by axial flow compressors. Rotary types are primarily specified in compressed air applications, though other types of compressors are also found in air service.

Basic Design

The primary components of a typical reciprocating compressor system can be seen in Figures 1 and 2. Note that the author has never seen a "typical" compressor installation, and acknowledges the existence of many exceptions.

reciprocating-compressor-1.jpgA particular design may have from one to six or more compression cylinders (Figure 1), also known as stages, which provide confinement for the process gas during compression. A piston is driven in a reciprocating action to compress the gas. Arrangements may be of single- or dual-acting design. (In the dual-acting design, compression occurs on both sides of the piston during both the advancing and retreating strokes.)

Some dual-acting cylinders in high-pressure applications will have a piston rod on both sides of the piston to provide equal surface area and balance loads. Tandem cylinder arrangements help minimize dynamic loads by locating cylinders in pairs, connected to a common crankshaft, so that the movements of the pistons oppose each other.

Gas pressure is sealed and wear of expensive components is minimized with disposable piston rings and rider bands respectively. These are formed from comparatively soft metals relative to piston and cylinder/liner metallurgy or materials such as polytetrafluoroethylene (PTFE).

Most equipment designs incorporate block-type, force-feed lubrication systems; however, when there is zero process tolerance for oil carryover, nonlubricated designs are employed. Cylinders for larger applications (typical cutoff is 300-hp) are equipped with coolant passages for thermosyphon or circulating liquid coolant-type systems, whereas some smaller home and shop compressors are typically air-cooled. Large application cylinders are generally fitted with replaceable liners that are press-fitted into the bore, and may include an antirotation pin.