by Jack Creamer, Schneider Electric

Improvements in performance and energy reduction can be achieved with smart drives and system optimization.

Intelligent pumping is simply defined by ARC Advisory Group as the combination of a pump and a VFD with digital control capability. While this defined the beginnings of the intelligent pump trends, we now see numerous specific drivers around topics such as:

  • Energy management
  • Application specific algorithms
  • Pump OEM-specific application programs

The term intelligent pumps is broadening to include the sensors that collect data and transmit pumping system performance. Some key attributes involved with intelligent pump systems include variable speed and multiple pump control come.

Intelligent pump capabilities
Table 1. Intelligent pump capabilites

Intelligent Pumps and Energy Savings

While the building automation industry has embraced the intelligent pumps trend strongly, accounting for almost 50 percent of all intelligent pumping revenues, many other industries are leading the way—such as water/wastewater, mining and minerals, pulp and paper and oil and gas.

Figure 1 shows the areas in which industries can take action to reduce energy consumption. While many companies focus on areas such as HVAC systems and motor retrofits, it is clear that pump system upgrades provide the largest energy savings potential. Figure 2 provides insight into the key industry segments that have the most to gain from energy-savings initiatives. The potential in energy savings with intelligent pumping can add as much as 20 percent to the bottom line, according to the U.S. Department of Energy.

Areas with potential for energy savings

Figure 1. Areas with potential for energy savings

 Industry segments that can most benefit from energy-saving initiatives

Figure 2. Industry segments that can most benefit from energy-saving initiatives

In addition to energy, other key drivers include OEM initiatives, such as OEM personalization. OEMs can customize software to either match pumping systems to application needs and/or pre-load pump data to greatly simplify start up and commissioning requirements.

Intelligent Pumps in the Oil & Gas Industry

There is particular excitement about intelligent pumping solutions in the oil and gas industry, specifically in the opportunities to improve the output of mature oil fields.

Most mature, onshore oil wells are not big producers, with many producing less than 10 barrels of oil per day. Pumpjack systems, progressive cavity pumps (PCP) and electrical submersible pumps (ESP) work hard to bring oil to the surface, and more operators are deploying carbon dioxide injection and other enhanced recovery techniques to boost production rates and extend field life.

Many operators deploy conventional time-on/time-off pump controls to prevent a pumped off condition from occurring. These controllers stop the pump jack for a predetermined period to ensure fluid is available before restarting the lift. Although simple to operate and adjust, they do not ensure maximum production recovery is achieved and only work as a safety mechanism to prevent damages caused by pumping a dry well.

Process efficiency is most improved with an intelligent pumping solution that employs a variable frequency drive to provide pump off control by varying the speed of the well and maintaining an effective fill level. Efficiency can be further improved by using information about the condition of the well to optimize the pump speed. The ultimate, intelligent pumping solution is one that takes advantage of this information in real-time and constantly optimizes the pump speed. In some more shallow wells, this can be done by using the motor load information in the drive as the primary data point. Deeper wells should take advantage of load profile information directly from the rod and,

ideally, the calculated or “down-hole” load profile information. Systems that employ such a solution are called fully optimized. A typical productivity improvement for such systems might be 5 percent. However, the results vary substantially up or slightly down based on the natural performance of the well in its previous, un-optimized state.

Pumpjack optimization can include scalable options for an operator: