by Wallace Wittkoff

The ancient Greek philosopher Plato is credited with coining the phrase, “Necessity is the mother of invention,” meaning that a need or problem encourages creative efforts to meet the need or solve the problem. It is unknown whether that phrase was going through Jim Wilden’s head as he watched water from a ruptured pipe gush into a shop at a steel factory in San Bernardino County, Calif., 50 years ago. Knowing that it needed to be removed, Wilden went to work, and in 1955, he had the solution—the air-operated double-diaphragm (AODD) pump.

The same ingenuity still occurs today, but now for a multitude of biopharmaceutical processes. The AODD pump has evolved to uniquely solve complex fluid transfer needs in this industry. Because of the critical nature of some processes, inefficient product transfer methods such as manual rolling carts with containers, purging tanks to evacuate product or manual gravity feeding transfers have been common. However, specifically designed AODD pumps for this industry now allow further use of pumped transfer processes (and associated production and energy efficiency) approaching the degree already found in the general chemical/industrial sector. 

First, Do No Harm

The diaphragm pump already has a cousin in the industry…the diaphragm valve. The diaphragm valve has long been the valve of choice in these types of applications because of its high product containment and clean ability traits. These are also available with AODD pump technology, along with a sealless stem and shaft-free product-side environment.
This is important as both the diaphragm valve and diaphragm pump have less risk of producing product damaging shear, and neither technology has dynamic seals that would risk leaks that could contaminate the product or the production environment.

So with innovations and enhancements for the ultra-sanitary conditions needed by the pharmaceutical industry, the diaphragm pump is now an attractive option for many fluid transfer needs. These processes—and the products they produce—must meet a wide array of regulations and certifications to ensure that they are being performed in a high-purity environment. Among the regulations that AODD pumps can satisfy are those from EHEDG, 3A, CE, ATEX, USP Class VI and FDA CFR 21.177. This includes a validation package with mill, 3.1b, polish, passivation and classified area use certifications. 

The liquids can run the gamut from extremely shear-sensitive to extremely viscous, and semi-solids can range from liquid glucose to polymer slurries. Pharmaceutical and biochemical fluids currently pumped with diaphragm pumps include: blood and by-products, live cell cultures and vaccine producing solutions, egg emulsions for vaccine production, pill coatings, eye care solutions, fluids for oncology, specialized disinfectants, nutraceuticals, vitamins, topicals (creams/lotions) and filter media.  The use of AODD technology can guarantee safe transfer during the production process.

According to Hoover’s, Inc., which analyzes companies and industries that drive the economy, as many as 1,500 companies in the U.S. manufacture and market pharmaceuticals (defined as a compound manufactured for use as a medicinal drug), with combined annual revenue of more than $200 billion. These numbers indicate that the manufacture of pharmaceuticals is one of the lynchpins of the American economy. The actual creation of pharmaceuticals involves one of three major methods:

Synthesis—using chemical reactions to build a drug from simpler components
Extraction—using solvents to remove and purify a drug from a natural source
Biotechnology—using methods such as gene-splicing or the production of antibodies using mammalian (animal-based) cells

No matter the method used to produce biopharmaceuticals, the actual manufacturing process is a precise one that must be performed under demanding, exacting conditions, often in a cleanroom environment that prohibits instances of product leakage, fouling or cross-contamination.

AODD Benefits

Specifically, AODD technology is a boon to pharmaceutical manufacture in a number of crucial areas: